metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Huan-Ran Xing and Xin-Hua Li*

School of Chemistry and Materials Science, Wenzhou University, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.032 wR factor = 0.079 Data-to-parameter ratio = 10.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[[diaquacobalt(II)]-μ-2,5-dicarboxybenzene-1,4-dicarboxylato-μ-di-4-pyridylethene]

In the polymeric title complex, $[Co(TBC)(BPE)(H_2O)_2]_n$ [TBC is the 2,5-dicarboxybenzene-1,4-dicarboxylate dianion $(C_{10}H_4O_8)$ and BPE is 1,2-bis(4-pyridyl)ethene $(C_{12}H_{10}N_2)]$, the Co^{II} ion, located on an inversion centre, assumes a distorted octahedral coordination geometry. The TBC and BPE ligands are located across individual inversion centres and bridge neighbouring Co^{II} ions to form two-dimensional polymeric sheets.

Comment

The rational design and synthesis of multinuclear coordination architectures is a rapidly developing field in current coordination chemistry for the development of novel functional materials (Fujita, 1999). As part of our ongoing investigation on polymeric complexes, the title two-dimensional Co^{II} polymeric complex, (I), has been prepared in our laboratory.

The coordination environment around the Co^{II} ion is shown in Fig. 1. The Co^{II} ion is located on an inversion centre and coordinated by two carboxylate O atoms from 2,5dicarboxybenzene-1,4-dicarboxylate dianions (TBC), two N atoms from 1,2-bis(4-pyridyl)ethene (BPE) ligands and two water molecules, resulting in a distorted octahedral coordination geometry (Table 1). The TBC and BPE ligands are located across individual inversion centres and bridge neighbouring Co^{II} ions to form a two-dimensional polymeric structure (Fig. 2).

© 2006 International Union of Crystallography All rights reserved

m1506

Neighbouring polymeric sheets are linked to each other *via* $O-H\cdots O$ hydrogen bonding (Table 2) to form a threedimensional supramolecular structure.

ordination

Received 8 May 2006 Accepted 27 May 2006

Experimental

An aqueous solution (16 ml) of H₂TBC (0.51 g, 2 mmol), BPE (0.41 g, 2 mmol) and CoSO₄·7H₂O (0.62 g, 2 mmol) in a 30 ml Teflonlined stainless steel reactor was heated at 423 K for 4 d and then slowly cooled to room temperature to give pink prismatic single crystals.

V = 494.64 (8) Å³

 $D_x = 1.777 \text{ Mg m}^{-3}$

 $0.24 \times 0.16 \times 0.07 \text{ mm}$

2614 measured reflections

1731 independent reflections

1657 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.94 \text{ mm}^{-1}$

T = 298 (2) K

Prism, pink

 $R_{\rm int} = 0.012$ $\theta_{\rm max} = 25.1^\circ$

Z = 1

Crystal data

 $[Co(C_{10}H_4O_8)(C_{12}H_{10}N_2)(H_2O)_2]$ $M_{\rm m} = 529.31$ Triclinic, $P\overline{1}$ a = 6.8680 (7) Å b = 8.5558 (8) Å c = 8.9769 (9) Å $\alpha = 102.552 (2)^{\circ}$ $\beta = 93.594 \ (2)^{\circ}$ $\gamma = 104.500(2)^{\circ}$

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\min} = 0.84, \ T_{\max} = 0.94$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0386P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.032$	+ 0.4596P
$wR(F^2) = 0.079$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
1731 reflections	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
163 parameters	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL9
	Extinction coefficient: 0.048 (4)

Table 1

Selected bond lengths (Å).

Co1-O1	2.1426 (15)	Co1-N1	2.1455 (18)
Co1-O5	2.1019 (16)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3-H3···O2 ⁱ	0.82	1.79	2.605 (2)	170
$O5-H5A\cdots O4^{ii}$	0.82	2.03	2.835 (2)	166
$O5-H5B\cdots O2^{iii}$	0.82	2.04	2.766 (2)	147

Symmetry codes: (i) -x + 2, -y + 2, -z; (ii) x - 1, y - 1, z; (iii) x - 1, y, z.

Water H atoms and the carboxyl H atom were located in a difference Fourier map and refined as riding, with O-H = 0.82 Å and $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm O})$. Other H atoms were positioned geometrically, with C-H = 0.93 Å, and refined in riding mode $[U_{iso}(H) =$ $1.2U_{eq}(C)].$

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXTL (Bruker, 2002).

metal-organic papers

The coordination environment around the Co^{II} ion, with 50% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry codes: (*) 1 - x, 1 - y, -z; (#) 1 - x, 2 - y, -1 - z].

Figure 2

A segment of the two-dimensional complex sheet. [Symmetry codes: (A) x, y + 1, z - 1; (B) x - 1, y - 1, z - 1; (C) x - 1, y, z - 2; (D) -x, -y, -z - 1; (E) 1 - x, 1 - y, -z; (F) 1 - x, 2 - y, -z - 1; (G) -x, 1 - y, -z; (F) 1 - x, 2 - y, -z - 1; (G) -x, 1 - y, -z; (F) 1 - x, 2 - y, -z - 1; (G) -x, 1 - y, -z; (F) 1 - x, 2 - y, -z - 1; (G) -x, 1 - y, -z; (F) 1 - x, 2 - y, -z - 1; (G) -x, 1 - y, -z; (F) 1 - x, 2 - y, -z - 1; (G) -x, 1 - y, -z; (F) 1 - x, 2 - y, -z - 1; (G) -x, 1 - y, -z; (F) -x, 2 - y, -z - 1; (G) -x, 1 - y, -z; (F) -x, 2 - y, -z - 1; (F) -x, -z - y, -z-2 - z.]

We acknowledge financial support by Zhejiang Provincial Natural Science Foundation of China (grant No. Y404294) and the '551' Distinguished Person Foundation of Wenzhou.

References

- Bruker (2002). SMART (Version 5.618), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Fujita, M. (1999). Acc. Chem. Res. 32, 53-61.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.