Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Huan-Ran Xing and Xin-Hua Li*

School of Chemistry and Materials Science, Wenzhou University, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.032$
$w R$ factor $=0.079$
Data-to-parameter ratio $=10.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[[diaquacobalt(II)]- μ-2,5-dicarboxybenzene-1,4-dicarboxylato- μ-di-4-pyridylethene]

In the polymeric title complex, $\left[\mathrm{Co}(\mathrm{TBC})(\mathrm{BPE})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ [TBC is the 2,5-dicarboxybenzene-1,4-dicarboxylate dianion $\left(\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{O}_{8}\right)$ and BPE is 1,2-bis(4-pyridyl)ethene $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}\right)$], the $\mathrm{Co}^{\mathrm{II}}$ ion, located on an inversion centre, assumes a distorted octahedral coordination geometry. The TBC and BPE ligands are located across individual inversion centres and bridge neighbouring $\mathrm{Co}^{\mathrm{II}}$ ions to form two-dimensional polymeric sheets.

Comment

The rational design and synthesis of multinuclear coordination architectures is a rapidly developing field in current coordination chemistry for the development of novel functional materials (Fujita, 1999). As part of our ongoing investigation on polymeric complexes, the title two-dimensional $\mathrm{Co}^{\mathrm{II}}$ polymeric complex, (I), has been prepared in our laboratory.

(I)

The coordination environment around the $\mathrm{Co}^{\mathrm{II}}$ ion is shown in Fig. 1. The $\mathrm{Co}^{\mathrm{II}}$ ion is located on an inversion centre and coordinated by two carboxylate O atoms from 2,5-dicarboxybenzene-1,4-dicarboxylate dianions (TBC), two N atoms from 1,2-bis(4-pyridyl)ethene (BPE) ligands and two water molecules, resulting in a distorted octahedral coordination geometry (Table 1). The TBC and BPE ligands are located across individual inversion centres and bridge neighbouring $\mathrm{Co}^{\mathrm{II}}$ ions to form a two-dimensional polymeric structure (Fig. 2).

Neighbouring polymeric sheets are linked to each other via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Table 2) to form a threedimensional supramolecular structure.

Received 8 May 2006
Accepted 27 May 2006

Experimental

An aqueous solution (16 ml) of $\mathrm{H}_{2} \mathrm{TBC}(0.51 \mathrm{~g}, 2 \mathrm{mmol})$, BPE $(0.41 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.62 \mathrm{~g}, 2 \mathrm{mmol})$ in a 30 ml Teflonlined stainless steel reactor was heated at 423 K for 4 d and then slowly cooled to room temperature to give pink prismatic single crystals.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{O}_{8}\right)\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=529.31$
Triclinic, $P \overline{1}$
$a=6.8680$ (7) \AA
$b=8.5558$ (8) \AA
$c=8.9769$ (9) \AA
$\alpha=102.552$ (2) ${ }^{\circ}$
$\beta=93.594$ (2) ${ }^{\circ}$
$\gamma=104.500(2)^{\circ}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)

$$
T_{\min }=0.84, T_{\max }=0.94
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.079$
$S=1.04$
1731 reflections
163 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0386 P)^{2}\right. \\
& +0.4596 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\text {max }}=0.35 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.34 \mathrm{e}^{\AA^{-3}} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.048 \text { (4) }
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

Co1-O1	$2.1426(15)$	Co1-N1	$2.1455(18)$
Co1-O5	$2.1019(16)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.82	1.79	2.605 (2)	170
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 4^{\text {ii }}$	0.82	2.03	2.835 (2)	166
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 2{ }^{\text {iii }}$	0.82	2.04	2.766 (2)	147

Symmetry codes: (i) $-x+2,-y+2,-z$; (ii) $x-1, y-1, z$; (iii) $x-1, y, z$.
Water H atoms and the carboxyl H atom were located in a difference Fourier map and refined as riding, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. Other H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and refined in riding mode $\left[U_{\text {iso }}(\mathrm{H})=\right.$ $1.2 U_{\text {eq }}(\mathrm{C})$].

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXTL (Bruker, 2002).

Figure 1
The coordination environment around the $\mathrm{Co}^{\mathrm{II}}$ ion, with 50% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry codes: (*) $1-x, 1-y,-z$; (\#) $1-x, 2-y,-1-z]$.

Figure 2
A segment of the two-dimensional complex sheet. [Symmetry codes: (A) $x, y+1, z-1$; (B) $x-1, y-1, z-1$; (C) $x-1, y, z-2$; (D) $-x,-y$, $-z-1$; (E) $1-x, 1-y,-z$; (F) $1-x, 2-y,-z-1$; (G) $-x, 1-y$, $-2-z$.

We acknowledge financial support by Zhejiang Provincial Natural Science Foundation of China (grant No. Y404294) and the '551' Distinguished Person Foundation of Wenzhou.

References

Bruker (2002). SMART (Version 5.618), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Fujita, M. (1999). Acc. Chem. Res. 32, 53-61.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

